298 research outputs found

    Large Binocular Telescope view of the atmosphere of GJ1214b

    Get PDF
    The atmospheric composition and vertical structure of the super-Earth GJ1214b has been a subject of debate since its discovery in 2009. Recent studies have indicated that high-altitude clouds might mask the lower layers. However, some data points that were gathered at different times and facilities do not fit this picture, probably because of a combination of stellar activity and systematic errors. We observed two transits of GJ1214b with the Large Binocular Camera, the dual-channel camera at the Large Binocular Telescope. For the first time, we simultaneously measured the relative planetary radius k=Rp/Rk=R_\mathrm{p}/R_\star at blue and red optical wavelengths (B+RB+R), thus constraining the Rayleigh scattering on GJ1214b after correcting for stellar activity effects. To the same purpose, a long-term photometric follow-up of the host star was carried out with WiFSIP at STELLA, revealing a rotational period that is significantly longer than previously reported. Our new unbiased estimates of kk yield a flat transmission spectrum extending to shorter wavelengths, thus confirming the cloudy atmosphere scenario for GJ1214b.Comment: 11 pages, 5 figures, 3 tables. Published in A&A. Minor changes to reflect the published versio

    Coordinated X-ray and Optical observations of Star-Planet Interaction in HD 17156

    Get PDF
    The large number of close-in Jupiter-size exoplanets prompts the question whether star-planet interaction (SPI) effects can be detected. We focused our attention on the system HD 17156, having a Jupiter-mass planet in a very eccentric orbit. Here we present results of the XMM-Newton observations and of a five months coordinated optical campaign with the HARPS-N spectrograph. We observed HD 17156 with XMM-Newton when the planet was approaching the apoastron and then at the following periastron passage, quasi simultaneously with HARPS-N. We obtained a clear (5.5σ\approx 5.5\sigma) X-ray detection only at the periastron visit, accompanied by a significant increase of the RHKR'_{\rm HK} chromospheric index. We discuss two possible scenarios for the activity enhancement: magnetic reconnection and flaring or accretion onto the star of material tidally stripped from the planet. In any case, this is possibly the first evidence of a magnetic SPI effect caught in action

    A coordinated optical and X-ray spectroscopic campaign on HD179949: searching for planet-induced chromospheric and coronal activity

    Get PDF
    HD179949 is an F8V star, orbited by a close-in giant planet with a period of ~3 days. Previous studies suggested that the planet enhances the magnetic activity of the parent star, producing a chromospheric hot spot which rotates in phase with the planet orbit. However, this phenomenon is intermittent since it was observed in several but not all seasons. A long-term monitoring of the magnetic activity of HD179949 is required to study the amplitude and time scales of star-planet interactions. In 2009 we performed a simultaneous optical and X-ray spectroscopic campaign to monitor the magnetic activity of HD179949 during ~5 orbital periods and ~2 stellar rotations. We analyzed the CaII H&K lines as a proxy for chromospheric activity, and we studied the X-ray emission in search of flux modulations and to determine basic properties of the coronal plasma. A detailed analysis of the flux in the cores of the CaII H&K lines and a similar study of the X-ray photometry shows evidence of source variability, including one flare. The analysis of the the time series of chromospheric data indicates a modulation with a ~11 days period, compatible with the stellar rotation period at high latitudes. Instead, the X-ray light curve suggests a signal with a period of ~4 days, consistent with the presence of two active regions on opposite hemispheres. The observed variability can be explained, most likely, as due to rotational modulation and to intrinsic evolution of chromospheric and coronal activity. There is no clear signature related to the orbital motion of the planet, but the possibility that just a fraction of the chromospheric and coronal variability is modulated with the orbital period of the planet, or the stellar-planet beat period, cannot be excluded. We conclude that any effect due to the presence of the planet is difficult to disentangle

    Broad-band spectrophotometry of the hot Jupiter HAT-P-12b from the near-UV to the near-IR

    Get PDF
    The detection of trends or gradients in the transmission spectrum of extrasolar planets is possible with observations at very low spectral resolution. Transit measurements of sufficient accuracy using selected broad-band filters allow for an initial characterization of the atmosphere of the planet. We obtained time series photometry of 20 transit events and analyzed them homogeneously, along with eight light curves obtained from the literature. In total, the light curves span a range from 0.35 to 1.25 microns. During two observing seasons over four months each, we monitored the host star to constrain the potential influence of starspots on the derived transit parameters. We rule out the presence of a Rayleigh slope extending over the entire optical wavelength range, a flat spectrum is favored for HAT-P-12b with respect to a cloud-free atmosphere model spectrum. A potential cause of such gray absorption is the presence of a cloud layer at the probed latitudes. Furthermore, in this work we refine the transit parameters, the ephemeris and perform a TTV analysis in which we found no indication for an unseen companion. The host star showed a mild non-periodic variability of up to 1%. However, no stellar rotation period could be detected to high confidence.Comment: 13 pages, 6 figures, Accepted for publication in A&

    The HADES RV Programme with HARPS-N@TNG IV. Time resolved analysis of the Ca ii H&K and H{\alpha} chromospheric emission of low-activity early-type M dwarfs

    Full text link
    M dwarfs are prime targets for planet search programs, particularly of those focused on the detection and characterization of rocky planets in the habitable zone. Understanding their magnetic activity is important because it affects our ability to detect small planets, and it plays a key role in the characterization of the stellar environment. We analyze observations of the Ca II H&K and H{\alpha} lines as diagnostics of chromospheric activity for low-activity early-type M dwarfs. We analyze the time series of spectra of 71 early-type M dwarfs collected for the HADES project for planet search purposes. The HARPS-N spectra provide simultaneously the H&K doublet and the H{\alpha} line. We develop a reduction scheme able to correct the HARPS-N spectra for instrumental and atmospheric effects, and to provide flux-calibrated spectra in units of flux at the stellar surface. The H&K and H{\alpha} fluxes are compared with each other, and their variability is analyzed. We find that the H and K flux excesses are strongly correlated with each other, while the H{\alpha} flux excess is generally less correlated with the H&K doublet. We also find that H{\alpha} emission does not increase monotonically with the H&K line flux, showing some absorption before being filled in by chromospheric emission when H&K activity increases. Analyzing the time variability of the emission fluxes, we derive a tentative estimate of the rotation period (of the order of a few tens of days) for some of the program stars, and the typical lifetime of chromospheric active regions (a few stellar rotations). Our results are in good agreement with previous studies. In particular, we find evidence that the chromospheres of early-type M dwarfs could be characterized by different filaments coverage, affecting the formation mechanism of the H{\alpha} line. We also show that chromospheric structure is likely related to spectral type

    The GAPS Programme with HARPS-N at TNG. X. Differential abundances in the XO-2 planet hosting binary

    Get PDF
    Binary stars hosting exoplanets are a unique laboratory where chemical tagging can be performed to measure with high accuracy the elemental abundances of both stellar components, with the aim to investigate the formation of planets and their subsequent evolution. Here, we present a high-precision differential abundance analysis of the XO-2 wide stellar binary based on high resolution HARPS-N@TNG spectra. Both components are very similar K-dwarfs and host planets. Since they formed presumably within the same molecular cloud, we expect they should possess the same initial elemental abundances. We investigate if the presence of planets can cause some chemical imprints in the stellar atmospheric abundances. We measure abundances of 25 elements for both stars with a range of condensation temperature TC=401741T_{\rm C}=40-1741 K, achieving typical precisions of 0.07\sim 0.07 dex. The North component shows abundances in all elements higher by +0.067±0.032+0.067 \pm 0.032 dex on average, with a mean difference of +0.078 dex for elements with TC>800T_{\rm C} > 800 K. The significance of the XO-2N abundance difference relative to XO-2S is at the 2σ2\sigma level for almost all elements. We discuss the possibility that this result could be interpreted as the signature of the ingestion of material by XO-2N or depletion in XO-2S due to locking of heavy elements by the planetary companions. We estimate a mass of several tens of MM_{\oplus} in heavy elements. The difference in abundances between XO-2N and XO-2S shows a positive correlation with the condensation temperatures of the elements, with a slope of (4.7±0.9)×105(4.7 \pm 0.9) \times 10^{-5} dex K1^{-1}, which could mean that both components have not formed terrestrial planets, but that first experienced the accretion of rocky core interior to the subsequent giant planets.Comment: 10 pages, 5 figures, accepted by Astronomy & Astrophysics. Numbering of the series change

    The Hubble Space Telescope Treasury Program on the Orion Nebula Cluster

    Full text link
    The Hubble Space Telescope (HST) Treasury Program on the Orion Nebula Cluster has used 104 orbits of HST time to image the Great Orion Nebula region with the Advanced Camera for Surveys (ACS), the Wide-Field/Planetary Camera 2 (WFPC2) and the Near Infrared Camera and Multi Object Spectrograph (NICMOS) instruments in 11 filters ranging from the U-band to the H-band equivalent of HST. The program has been intended to perform the definitive study of the stellar component of the ONC at visible wavelengths, addressing key questions like the cluster IMF, age spread, mass accretion, binarity and cirumstellar disk evolution. The scanning pattern allowed to cover a contiguous field of approximately 600 square arcminutes with both ACS and WFPC2, with a typical exposure time of approximately 11 minutes per ACS filter, corresponding to a point source depth AB(F435W) = 25.8 and AB(F775W)=25.2 with 0.2 magnitudes of photometric error. We describe the observations, data reduction and data products, including images, source catalogs and tools for quick look preview. In particular, we provide ACS photometry for 3399 stars, most of them detected at multiple epochs, WFPC2 photometry for 1643 stars, 1021 of them detected in the U-band, and NICMOS JH photometry for 2116 stars. We summarize the early science results that have been presented in a number of papers. The final set of images and the photometric catalogs are publicly available through the archive as High Level Science Products at the STScI Multimission Archive hosted by the Space Telescope Science Institute.Comment: Accepted for publication on the Astrophysical Journal Supplement Series, March 27, 201

    The GAPS programme at TNG XXVI. Magnetic activity in M stars: spectroscopic monitoring of AD Leonis

    Get PDF
    Understanding stellar activity in M dwarfs is fundamental to improving our knowledge of the physics of stellar atmospheres and for planet search programmes. High levels of stellar activity (also with flare events) can cause additional variations in the stellar emission that contaminate the signal induced by a planet and that need to be corrected. The study of activity indicators in active stars can improve our capability of modelling this signal. Our aim is to understand the behaviour of stellar chromospheres of M stars, studying the more sensitive chromospheric activity indicators, characterising their variability and on finding the correlations among these indicators to obtain information on the origin of the magnetic activity in low-mass stars. We studied the main optical activity indicators (Ca II H&K, Balmer lines, Na I D1,2_{1,2} doublet, He I D3_3 and other helium lines) measured for AD Leonis using the data provided by HARPS-N in 2018 and by HARPS in 2006. We measured excess flux of the selected activity indicators and analysed the correlation between the different indicators as well as the temporal evolution of fluxes. A stellar flare was identified during the 2018 observing run and the Hα\alpha, Hβ\beta, He I 4471 A and He I 5876 A lines were analysed in detail by fitting the line profiles with two Gaussian components. We found that the Ca II H&K flux excesses are strongly correlated with each other, but the Ca II H&K doublet is generally less correlated with the other indicators. Moreover, Hα\alpha is correlated with Na I doublet and helium lines. Analysing the time variability of flux of the studied lines, we found a higher level of activity of the star during the observations in 2018 than in 2006, while Ca II H&K showed more intense emission on spectra obtained during the observations in 2006. We investigated the flare evaluating the mass motion during the event.Comment: 18 pages, 6 figures, 12 tables. Accepted for publication in Section 8. Stellar atmospheres of Astronomy and Astrophysics. The official date of acceptance is 31/07/2020. Abstract shortened for the arXiv listin
    corecore